Minimal genus problem for pseudo-real Riemann surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher genus Riemann minimal surfaces

Even though the classification of genus zero, embedded minimal surfaces is not complete, W. H. Meeks J. Perez and A. Ros [14], [15], [16] have made progress concerning the question of the uniqueness of the Riemann examples in the class of genus zero embedded minimal surfaces which have an infinite number of ends. They conjecture in [15] that every embedded minimal surface of finite genus and wi...

متن کامل

Pseudo-real Riemann surfaces and chiral regular maps

A Riemann surface is called pseudo-real if it admits anticonformal automorphisms but no anticonformal involution. Pseudo-real Riemann surfaces appear in a natural way in the study of the moduli space MKg of Riemann surfaces considered as Klein surfaces. The moduli space Mg of Riemann surfaces of genus g is a two-fold branched covering of MKg , and the preimage of the branched locus consists of ...

متن کامل

Nonlinear Riemann-hilbert Problem for Bordered Riemann Surfaces

Let Σ be a bordered Riemann surface with genus g and m boundary components. Let {γz}z∈∂Σ be a smooth family of smooth Jordan curves in C which all contain the point 0 in their interior. Then there exists a holomorphic function f(z) on Σ smooth up to the boundary with at most 2g +m− 1 zeros on Σ such that f(z) ∈ γz for every z ∈ ∂Σ.

متن کامل

Planckian Vertices on High Genus Riemann Surfaces

We suggest a method to compute leading contribution at Planckian energies for superstring scattering amplitudes of any genus. In particular we test the method at oneloop level by comparison with previous result for the Regge trajectory renormalization. Modular invariance of these asymptotic terms are also discussed.

متن کامل

Riemann minimal surfaces in higher dimensions

We prove the existence of a one parameter family of minimal embedded hypersurfaces in R, for n ≥ 3, which generalize the well known 2 dimensional ”Riemann minimal surfaces”. The hypersurfaces we obtain are complete, embedded, simply periodic hypersurfaces which have infinitely many parallel hyperplanar ends. By opposition with the 2-dimensional case, they are not foliated by spheres. Résumé. No...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2010

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-010-0186-1